extension | φ:Q→Aut N | d | ρ | Label | ID |
C33:(C2xC8) = S3xF9 | φ: C2xC8/C1 → C2xC8 ⊆ Aut C33 | 24 | 16+ | C3^3:(C2xC8) | 432,736 |
C33:2(C2xC8) = C6xF9 | φ: C2xC8/C2 → C8 ⊆ Aut C33 | 48 | 8 | C3^3:2(C2xC8) | 432,751 |
C33:3(C2xC8) = C2xC3:F9 | φ: C2xC8/C2 → C8 ⊆ Aut C33 | 48 | 8 | C3^3:3(C2xC8) | 432,752 |
C33:4(C2xC8) = S3xC32:2C8 | φ: C2xC8/C2 → C2xC4 ⊆ Aut C33 | 48 | 8- | C3^3:4(C2xC8) | 432,570 |
C33:5(C2xC8) = C33:5(C2xC8) | φ: C2xC8/C2 → C2xC4 ⊆ Aut C33 | 24 | 8+ | C3^3:5(C2xC8) | 432,571 |
C33:6(C2xC8) = C3xC3:S3:3C8 | φ: C2xC8/C4 → C4 ⊆ Aut C33 | 48 | 4 | C3^3:6(C2xC8) | 432,628 |
C33:7(C2xC8) = C33:7(C2xC8) | φ: C2xC8/C4 → C4 ⊆ Aut C33 | 48 | 4 | C3^3:7(C2xC8) | 432,635 |
C33:8(C2xC8) = C3xS3xC3:C8 | φ: C2xC8/C4 → C22 ⊆ Aut C33 | 48 | 4 | C3^3:8(C2xC8) | 432,414 |
C33:9(C2xC8) = C3xC12.29D6 | φ: C2xC8/C4 → C22 ⊆ Aut C33 | 48 | 4 | C3^3:9(C2xC8) | 432,415 |
C33:10(C2xC8) = S3xC32:4C8 | φ: C2xC8/C4 → C22 ⊆ Aut C33 | 144 | | C3^3:10(C2xC8) | 432,430 |
C33:11(C2xC8) = C3:S3xC3:C8 | φ: C2xC8/C4 → C22 ⊆ Aut C33 | 144 | | C3^3:11(C2xC8) | 432,431 |
C33:12(C2xC8) = C12.69S32 | φ: C2xC8/C4 → C22 ⊆ Aut C33 | 72 | | C3^3:12(C2xC8) | 432,432 |
C33:13(C2xC8) = C12.93S32 | φ: C2xC8/C4 → C22 ⊆ Aut C33 | 48 | 4 | C3^3:13(C2xC8) | 432,455 |
C33:14(C2xC8) = C6xC32:2C8 | φ: C2xC8/C22 → C4 ⊆ Aut C33 | 48 | | C3^3:14(C2xC8) | 432,632 |
C33:15(C2xC8) = C2xC33:4C8 | φ: C2xC8/C22 → C4 ⊆ Aut C33 | 48 | | C3^3:15(C2xC8) | 432,639 |
C33:16(C2xC8) = S3xC3xC24 | φ: C2xC8/C8 → C2 ⊆ Aut C33 | 144 | | C3^3:16(C2xC8) | 432,464 |
C33:17(C2xC8) = C3:S3xC24 | φ: C2xC8/C8 → C2 ⊆ Aut C33 | 144 | | C3^3:17(C2xC8) | 432,480 |
C33:18(C2xC8) = C8xC33:C2 | φ: C2xC8/C8 → C2 ⊆ Aut C33 | 216 | | C3^3:18(C2xC8) | 432,496 |
C33:19(C2xC8) = C3xC6xC3:C8 | φ: C2xC8/C2xC4 → C2 ⊆ Aut C33 | 144 | | C3^3:19(C2xC8) | 432,469 |
C33:20(C2xC8) = C6xC32:4C8 | φ: C2xC8/C2xC4 → C2 ⊆ Aut C33 | 144 | | C3^3:20(C2xC8) | 432,485 |
C33:21(C2xC8) = C2xC33:7C8 | φ: C2xC8/C2xC4 → C2 ⊆ Aut C33 | 432 | | C3^3:21(C2xC8) | 432,501 |